Suscríbete
Suscríbete

Análisis de costes en la producción de energía térmica y simulación energética

Ashrae figura 1 30647
|

El presente artículo explica la simulación energética que se realizó para un estudio bajo el título ‘Análisis de costes energéticos en producción de energía térmica para aportar frío según el sistema de condensación elegido en un hospital’, presentado vía ponencia en el XXXVI Congreso de Ingeniería Hospitalariacelebrado en Zaragoza.


La realización del análisis, que se centra en la simulación energética de los diferentes sistemas propuestos y sus consumos, queda validada al haber sido contrastados éstos con los datos reales del hospital caso de estudio. Un factor muy importante en un hospital es la distribución de energía dentro del mismo, si bien esto se considera fuera del alcance de este trabajo.


Simulación energética


La simulación energética reproduce con la mayor fidelidad posible el comportamiento del edificio considerando uso, horarios, ocupación, iluminación, actividad de sus ocupantes y condiciones ambiente de manera horaria a lo largo de un año.


En ese tiempo es posible encontrar periodos en los que el efecto de las cargas térmicas interior y exterior puede ser aditivo, compensatorio o incluso sustractor, debido a la variación de las condiciones de ocupación, iluminación, actividad, etcétera. Además, se hace necesario considerar en la simulación el control y los efectos de la recuperación de calor y del enfriamiento gratuito (free-cooling) legalmente obligatorios.


Datos de partida para la simulación


Para que una simulación energética sea fiable deben tenerse en cuenta, como mínimo, cuatro aspectos fundamentales: definición precisa del edifico y usos, cálculo de las necesidades térmicas, consumo de los equipos de producción de frío y, finalmente, coste del consumo eléctrico.


En nuestro caso se aborda un hospital de 20.000 m2, con una variación de la ocupación según franja horaria (visitas, personal sanitario, etcétera), actividad metabólica según dependencia, así como iluminación, aparatos eléctricos, cerramientos y orientación solar.


La necesidad de llegar a este nivel de detalle en la definición para realizar la simulación es la garantía para poder interpretar y entender el comportamiento real del edificio. Situaciones diferentes en las cuales, para una misma condición exterior, tenemos una demanda interior diferente y, por tanto, el equipo de producción trabaja con diferente rendimiento.


En meses donde la demanda de frío es alta, las cargas positivas debidas a la ocupación, radiación e iluminación ayudan a calentar el edificio, pero no son suficientes para contrarrestar la pérdida de calor, con lo que será necesario aportar calor en todo momento.


En otros meses del año (como, por ejemplo, abril), se aprecia una reducción drástica de la carga negativa (frío), lo cual hace que, en determinados momentos del día, el balance entre la carga positiva y la negativa haga necesario refrigerar y en otros hace necesario calentar.


Finalmente, en los meses más cálidos, la situación se invierte. De este modo, en julio vemos que el balance en todo momento es positivo. A lo largo de la noche, cuando la temperatura exterior puede llegar a ser inferior a la temperatura de consigna del hospital, el aporte de aire más fresco de la ventilación provoca un equilibrio térmico sin necesidad de aporte energético con los grupos de producción. Las necesidades hora a hora durante todo el año determinan la curva de demanda del edificio.


Conocida la demanda, en función de los rendimientos de los equipos vemos el consumo del sistema. En una primera aproximación, estudiando los consumos y costes se aprecia que, como norma general, los sistemas que condensan con agua directamente, como la torre y el pozo, consiguen mejores rendimientos. Para completar el comparativo, hay que tener en cuenta el consumo asociado a elementos necesarios de transporte de energía que conciernen exclusivamente a la producción, como son las bombas de circulación de agua, la bomba de pozo o los ventiladores. Incluidos estos consumos, el escenario varía sustancialmente y los sistemas condensados por aire ofrecen mejores resultados.


Finalmente, añadiendo el coste de la energía obtenemos el coste en euros para este hospital -de 20.000 m2 superficie.


Para establecer costes totales habría que incluir consumo de agua (sistemas de condensación con torre) y costes de mantenimiento. Añadiendo estos últimos se obtuvieron unos resultados finales que hacían más atractiva la aerotermia frente a otros sistemas.


Conclusiones


La primera conclusión es que una simulación energética se presenta como un método idóneo para contrastar el funcionamiento de los equipos y del sistema elegido con los datos reales del hospital. A partir de ahí, se puede prever cómo afecta a la producción la elección de otros sistemas y establecer estrategias de ahorro energéticas adecuadas a las características y usos del edificio.


Igualmente, es importantísimo destacar que es imprescindible tener datos reales de rendimiento de los equipos trabajando en cargas parciales con distintas condiciones de condensación para tener una simulación fiable. Igualmente, para que los datos obtenidos sean correctos, hay que incluir un cálculo preciso de las necesidades térmicas del edificio y su variación en cada momento. Un dato aproximado, o una suposición de uso no correcta, alteraría de manera considerable los resultados obtenidos perdiendo toda la fiabilidad de los mismos.


Para el caso de estudio, de un hospital de un 20.000 m2, la elección de sistemas de condensación por aire pare a priori una tecnología muy adecuada. En cualquier caso, la elección dependerá de aspectos como la disponibilidad de espacio, las condiciones meteorológicas de la zona y las condiciones de suministro de la red eléctrica.


Agradecimientos


Queremos agradecer a los fabricantes Carrier, York (Johnson Controls), Keyter y Trane la información facilitada sobre sus equipos por haber resultado imprescindible para la realización de la simulación.


En la realización de la ponencia participaron: Fidel Ledesma Lardéis, ingeniero técnico de Mantenimiento del Hospital Nuestra Señora de Gracia (Zaragoza); José Muerza, ingeniero y gerente en Geste Innovación; Carlos Gil, ingeniero delegado de Keyter Intarcon; Alberto Fernández, Consultant Engineer en Trane, y José Antonio Torre, ingeniero industrial y director comercial en Evair.


Comentarios

Genwec interclean
Genwec interclean
Genwec Genebre grifería válvulas control de fluidos Ferias secamanos

Falcon es el nuevo secador de manos presentado por Genwec. Su secado rápido y energéticamente eficiente ofrece un aire totalmente limpio debido a su triple tecnología higienizante. 

Gyrofocus
Gyrofocus
Focus calefacción chimeneas

El Gyrofocus, modelo de chimenea suspendido y giratorio de Focus, está ahora disponible en versión bioetanol. Esta innovación, desarrollada en colaboración con Ignisial Paris, ha sido diseñada... 

Panasonic Francia
Panasonic Francia
Panasonic Heating & Cooling fábricas bombas de calor Panasonic

Panasonic Heating & Cooling anuncia una inversión de nueve millones de euros en su planta de Tillières-Sur-Avre, en Francia, para la fabricación de soluciones de climatización eficientes.

Arco roadshow
Arco roadshow
Válvulas Arco roadshow válvulas

Válvulas Arco presenta su primer roadshow internacional, que ha iniciado su gira el pasado 7 de mayo en Valencia y que recorrerá las principales ciudades de España, Portugal, Francia, Bélgica, Polonia y Hungría, entre otros países. 

Salvador Escoda Barcelona 1
Salvador Escoda Barcelona 1
Salvador Escoda aniversario distribución instaladores

El Museo Marítimo de Barcelona acogió la último de los festejos que Salvador Escoda ha celebrado a propósito de su 50º aniversario y que previamente se celebraron en Sevilla, Valencia y Madrid.

APD Madrid
APD Madrid
Auna Distribución Aúna Partner Days instaladores

El pasado 9 de mayo Aúna Distribución llevó a cabo el primer Aúna Partner Day del año en Madrid con un asistencia sin precedentes, ya que ha sido el APD que, hasta la fecha, ha cosechado mayor éxito de asistencia y participación. 

Hisense promoción 1
Hisense promoción 1
Hisense aire acondicionado refrigeración cocinas

Hisense ha lanzado en mayo dos promociones ‘cashback’ con una selección de sus equipos de aire acondicionado y productos de su gama blanca. ‘Cashback Hisense aire acondicionado’ y ‘Cashback Hisense gama blanca'.

CNI observatorio morosidad
CNI observatorio morosidad
CNI morosidad empresas instaladores

El pasado 1 de mayo se publicó en el BOE el Real Decreto 439/2024 que regula el Observatorio Estatal de la Morosidad Privada, "un paso muy importante en la lucha contra la morosidad", según CNI.

 

Testo 565i
Testo 565i
Testo bomba de vacío evacuación refrigeración

La nueva bomba de vacío automática Testo 565i con Bluetooth ofrece una evacuación precisa, rápida y completamente automatizada. La compatibilidad total del sistema y la conexión automática por Bluetooth...

Ursa XPS
Ursa XPS
URSA

Ursa mejora su gama de XPS con una mayor capacidad de aislamiento térmico y nuevos espesores. Concretamente, Ursa XPS mejora su conductividad térmica a lambda 0,032, la más baja conseguida por este material.

LG artcool
LG artcool
LG aire acondicionado splits

"Llevando diseño, funcionalidad y eficiencia al hogar': así podríamos definir la presentación por parte de LG Electronics de las últimas incorporaciones en su gama de aire acondicionado: los innovadores LG Dualcool Y LG Artcool Gallery.

 

 

Clima Noticias
NÚMERO 251 // 2024

Empresas destacadas

REVISTA